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Partial actions of groups on semigroups

Definition

A partial action of a group G on a semigroup S is a partial action of G on
the set S , whose domains Dx are ideals of S , and the partial bijections
θx : Dx−1 → Dx are isomorphisms of semigroups.

Definition

If S is a monoid, then it is reasonable to assume that each ideal Dx is also
a monoid (i. e. generated by a central idempotent 1x). In this situation we
say that θ is unital.

Definition

A morphism of partial actions (unital partial actions) ϕ : (S , θ)→ (S ′, θ′)
of G on semigroups (monoids) is a morphism of partial actions of G on
the sets, whose restriction on each Dx is a homomorphism of semigroups
(monoids) Dx → D′x .
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Partial G -modules

G is a group.

Definition (Dokuchaev-Khrypchenko, 2013)

A partial G -module is a commutative monoid A with a unital partial
action θ of G on A.

The category of partial G -modules with morphisms of unital partial actions
between them is denoted by pMod(G ).

Remark

The category pMod(G ) is not abelian in general, because Hom(A,A′) = ∅
for some A,A′ ∈ pMod(G ). For example, this happens when 1x = 1y in A,
but 1′x 6= 1′y in A′ for some x , y ∈ G .
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partial n-cochains

(A, θ) ∈ pMod(G );

1(x1,...,xn) := 1x11x1x2 . . . 1x1...xn ;

U(I ) denotes the group of units of an ideal I .

Definition

For n > 0 a partial n-cochain of G with values in A is a function
f : Gn → A, such that f (x1, . . . , xn) ∈ U(1(x1,...,xn)A). By a partial
0-cochain we shall mean an invertible element of A.

Denote the set of partial n-cochains by Cn(G ,A). It is an abelian group
under pointwise multiplication.
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Coboundary homomorphism

Definition

For n > 0, f ∈ Cn(G ,A) and x1, . . . , xn+1 ∈ G define

(δnf )(x1, . . . , xn+1) = θx1(1x−1
1
f (x2, . . . , xn+1))

n∏
i=1

f (x1, . . . , xixi+1, . . . , xn+1)(−1)i

f (x1, . . . , xn)(−1)n+1
,

the inverse elements being taken in the corresponding ideals. If
a ∈ C 0(G ,A) = U(A), we set (δ0a)(x) = θx(1x−1a)a−1.

Proposition

The map δn is a homomorphism Cn(G ,A)→ Cn+1(G ,A), such that
δn+1δn = 0 for all n ≥ 0.
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Partial cohomology of G

Definition

The map δn is called a coboundary homomorphism. We define the abelian
groups Zn(G ,A) = ker δn, Bn(G ,A) = im δn−1 and
Hn(G ,A) = Zn(G ,A)/Bn(G ,A) of partial n-cocycles, n-coboundaries and
n-cohomologies of G with values in A, n ≥ 1
(H0(G ,A) = Z 0(G ,A) = ker δ0).

Proposition

For any n ≥ 0 the map A 7→ Hn(G ,A) is a functor from pMod(G ) to the
category Ab of abelian groups.
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Inverse partial G -modules

Proposition

Let (A, θ) ∈ pMod(G ). Define Ã =
⋃
U(1x1 . . . 1xnA), the union being

taken over all n ≥ 1 and x1, . . . , xn ∈ G . Then Ã is an inverse semigroup,
θx(1x−1Ã) = 1x Ã, so θ restricted to Ã defines a partial action θ̃ of G on Ã.
Moreover, (Ã, θ̃) ∈ pMod(G ), E (Ã) is generated by 1x (x ∈ G ) and
Hn(G ,A) ∼= Hn(G , Ã).

Definition

A partial G -module (A, θ) is called inverse if A is inverse and E (A) is
generated by 1x (x ∈ G ).

The above proposition shows that it is enough to study cohomology with
values in inverse partial G -modules.
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θx(1x−1Ã) = 1x Ã, so θ restricted to Ã defines a partial action θ̃ of G on Ã.
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θx(1x−1Ã) = 1x Ã, so θ restricted to Ã defines a partial action θ̃ of G on Ã.
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S-modules

S is an inverse semigroup.

Definition (Lausch, 1975)

An S-module is a semilattice of abelian groups A with a homomorphism
λ : S → EndA, s 7→ λs , and an isomorphism α : E (S)→ E (A) satisfying

(i) λe(a) = α(e)a for all e ∈ E (S) and a ∈ A,

(ii) λs(α(e)) = α(ses−1) for all s ∈ S and e ∈ E (S).

Definition (Lausch, 1975)

A morphism of S-modules ϕ : (A, λ, α)→ (A′, λ′, α′) is a homomorphism
of semigroups A→ A′, such that

(i) ϕ ◦ α = α′ on E (S);

(ii) ϕ ◦ λs = λ′s ◦ ϕ on A for all s ∈ S .
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Cohomology of S

Proposition (Lausch, 1975)

The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial S-module is the semilattice ZS of the copies
(ZS)e = {ne | n ∈ Z} of Z with λs(ne) = nses−1 and α(e) = 0e (e ∈ E (S),
s ∈ S).

Definition (Lausch, 1975)

The n-th cohomology group Hn
S(A) of S with values in A ∈ Mod(S) is

RnHom(−,A) applied to ZS .
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(ZS)e = {ne | n ∈ Z} of Z with λs(ne) = nses−1 and α(e) = 0e (e ∈ E (S),
s ∈ S).

Definition (Lausch, 1975)

The n-th cohomology group Hn
S(A) of S with values in A ∈ Mod(S) is

RnHom(−,A) applied to ZS .
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Partial homomorphisms

G is a group;

S is a monoid.

Definition (Exel, 1998)

A map Γ : G → S is called a partial homomorphism if Γ(1G ) = 1S and for
all x , y ∈ G :

(i) Γ(x−1)Γ(x)Γ(y) = Γ(x−1)Γ(xy);

(ii) Γ(x)Γ(y)Γ(y−1) = Γ(xy)Γ(y−1).

It follows that Γ(x)Γ(x−1) is an idempotent, which will be denoted by ex .
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Admissible partial homomorphisms

Definition

A partial homomorphism Γ : G → S is called admissible if

(i) 〈Γ(G )〉 = S ;

(ii) there exists a homomorphism η : S → G such that η ◦ Γ = idG .

Remark

If such a partial homomorphism Γ : G → S exists, then property (i)
guarantees that S is inverse.
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The crossed products by partial actions

(A, θ) is a partial G -module;

f ∈ Z 2(G ,A).

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set A ∗θ,f G of aδx ,
where x ∈ G , a ∈ 1xA and δx is a symbol. It is a semigroup under
multiplication aδx · bδy = aθx(1x−1b)f (x , y)δxy .

Remark

If (A, θ) is inverse, then A ∗θ,f G is inverse.

If f is trivial, then the notation A ∗θ,f G is reduced to A ∗θ G .
The map x 7→ 1xδx is an admissible partial homomorphism
Γθ : G → E (A) ∗θ G = Sθ associated with (A, θ).
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From inverse partial G -modules to S-modules

(A, θ) is an inverse partial G -module.

Proposition

There exist an inverse monoid S , an admissible partial homomorphism
Γ : G → S and a unique S-module structure (λ, α) on A satisfying

(i) 1x = α(ex) for all x ∈ G ;

(ii) θx(a) = λΓ(x)(a) for all x ∈ G and a ∈ 1x−1A.

Conversely, given an admissible partial homomorphism Γ : G → S and an
S-module (A, λ, α), equalities (i)–(ii) endow A with an inverse partial
G -module structure.

A standard way to choose Γ and hence (A, λ, α): set S = Sθ and Γ = Γθ.
Then αθ(1x1 . . . 1xnδ1) = 1x1 . . . 1xn and
λθ1x1 ...1xn1y δy

(a) = 1x1 . . . 1xnθy (1y−1a).
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Partial cohomology of groups as cohomology of inverse
semigroups

Theorem

For any admissible partial homomorphism Γ : G → S and A ∈ Mod(S)
inducing (A, θ) we have Hn(G ,A) ∼= Hn

S(A) for arbitrary n ≥ 0.

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions PARS 2014 14 / 24



Partial cohomology of groups as cohomology of inverse
semigroups

Theorem

For any admissible partial homomorphism Γ : G → S

and A ∈ Mod(S)
inducing (A, θ) we have Hn(G ,A) ∼= Hn

S(A) for arbitrary n ≥ 0.

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions PARS 2014 14 / 24



Partial cohomology of groups as cohomology of inverse
semigroups

Theorem

For any admissible partial homomorphism Γ : G → S and A ∈ Mod(S)
inducing (A, θ) we have

Hn(G ,A) ∼= Hn
S(A) for arbitrary n ≥ 0.

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions PARS 2014 14 / 24



Partial cohomology of groups as cohomology of inverse
semigroups

Theorem

For any admissible partial homomorphism Γ : G → S and A ∈ Mod(S)
inducing (A, θ) we have Hn(G ,A) ∼= Hn

S(A) for arbitrary n ≥ 0.

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions PARS 2014 14 / 24



Extensions of A by S

S is an inverse semigroup;

A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism
i : A→ U and an idempotent-separating epimorphism j : U → S , such
that i(A) = {u ∈ U | j(u) ∈ E (S)}.

Definition (Lausch, 1975)

Two extensions U and U ′ of A by S are called equivalent if there is a
homomorphism µ : U → U ′ such that the following diagram commutes:

A U S

A U ′ S

i j

i ′ j ′
µ
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Crossed products by partial actions as Lausch’s extensions

(A, θ) is an inverse partial G -module;

f ∈ Z 2(G ,A);

Γ : G → S and (A, λ, α) are an admissible partial homomorphism and
an S-module inducing (A, θ).

Proposition

The crossed product A ∗θ,f G is an extension of A by S , where
i : A→ A ∗θ,f G is given by a 7→ af (1, 1)−1δ1 and j : A ∗θ,f G → S is
defined by aδx 7→ α−1(aa−1)Γ(x).
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Extensions of A by G

G is a group;

A is a commutative inverse monoid (a semilattice of abelian groups
with identity).

Definition

An extension of A by G is a pair consisting of an admissible partial
homomorphism Γ : G → S and an extension (in the sense of Lausch) of A
by S .
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Extensions of A by G

Definition

Two extensions Γ : G → S , A
i→ U

j→ S and Γ′ : G → S ′, A
i ′→ U ′

j ′→ S ′

of A by G are called equivalent if there are isomorphisms µ : U → U ′ and
ν : S → S ′ such that the following diagrams commute:

G S

S ′

Γ

ν
Γ′

A U S

A U ′ S ′

i j

i ′ j ′
µ ν
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From extensions of A by G to partial G -modules

Proposition

Any extension of A by G induces a structure of inverse partial G -module
on A. Moreover, equivalent extensions induce identical modules.

Proposition

Let Γ : G → S , A
i→ U

j→ S be an extension of A by G and θ the
corresponding partial action of G on A. Then there is an equivalent

extension of the form Γθ : G → Sθ, A
i→ U

j ′→ Sθ.
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Extensions of (A, θ) by G

(A, θ) is an inverse partial G -module.

Definition

An extension of (A, θ) by G is an extension Γ : G → S , A
i→ U

j→ S of A
by G such that Γ = Γθ and the corresponding partial G -module is (A, θ).

Corollary

Equivalence classes of extensions of (A, θ) by G are in a one-to-one
correspondence with elements of H2(G ,A).

Theorem

Any extension of (A, θ) by G is equivalent to A ∗θ,f G for some (unique up
to a coboundary) f ∈ Z 2(G ,A).
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Split extensions of (A, θ) by G

(A, θ) is an inverse partial G -module.

Definition

An extension A
i→ U

j→ S of (A, θ) by G is said to split if there is a
homomorphism k : S → U (called a splitting) such that j ◦ k = idS .

Proposition

An extension of (A, θ) by G splits if and only if it is equivalent to A ∗θ G .
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The splittings of extensions of (A, θ) by G

Lemma

The splittings of the extension A ∗θ G are in a one-to-one correspondence
with the elements of Z 1(G ,A).

Definition

Two splittings k1 and k2 of a split extension A
i→ U

j→ S of (A, θ) by G
are said to be A-conjugate if there is a ∈ A such that
k1(s) = i(a)k2(s)i(a)−1 for all s ∈ S .

Theorem

There is a one-to-one correspondence between A-conjugacy classes of
splittings of A ∗θ G and elements of H1(G ,A).
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