Extensions of semilattices of groups arising from partial actions of groups

Michael Dokuchaev¹ and Mykola Khrypchenko²

Institute of Mathematics and Statistics University of São Paulo ¹Partially supported by CNPq of Brazil: 307659/2009–7 ²Supported by FAPESP of Brazil: 12/01554–7

Partial Actions and Representations Symposium, Gramado, Brazil, May 11–15, 2014

Partial actions of groups on semigroups

Partial actions of groups on semigroups

Definition

A partial action of a group G on a semigroup S

A partial action of a group *G* on a semigroup *S* is a partial action of *G* on the set *S*, whose domains \mathcal{D}_x are ideals of *S*, and the partial bijections $\theta_x : \mathcal{D}_{x^{-1}} \to \mathcal{D}_x$ are isomorphisms of semigroups.

A partial action of a group *G* on a semigroup *S* is a partial action of *G* on the set *S*, whose domains \mathcal{D}_x are ideals of *S*, and the partial bijections $\theta_x : \mathcal{D}_{x^{-1}} \to \mathcal{D}_x$ are isomorphisms of semigroups.

Definition

If S is a monoid, then it is reasonable to assume that each ideal D_x is also a monoid (i.e. generated by a central idempotent 1_x).

A partial action of a group *G* on a semigroup *S* is a partial action of *G* on the set *S*, whose domains \mathcal{D}_x are ideals of *S*, and the partial bijections $\theta_x : \mathcal{D}_{x^{-1}} \to \mathcal{D}_x$ are isomorphisms of semigroups.

Definition

If S is a monoid, then it is reasonable to assume that each ideal \mathcal{D}_x is also a monoid (i.e. generated by a central idempotent 1_x). In this situation we say that θ is unital.

A partial action of a group *G* on a semigroup *S* is a partial action of *G* on the set *S*, whose domains \mathcal{D}_x are ideals of *S*, and the partial bijections $\theta_x : \mathcal{D}_{x^{-1}} \to \mathcal{D}_x$ are isomorphisms of semigroups.

Definition

If S is a monoid, then it is reasonable to assume that each ideal \mathcal{D}_x is also a monoid (i.e. generated by a central idempotent 1_x). In this situation we say that θ is unital.

Definition

A morphism of partial actions (unital partial actions) $\varphi : (S, \theta) \to (S', \theta')$ of *G* on semigroups (monoids)

A partial action of a group *G* on a semigroup *S* is a partial action of *G* on the set *S*, whose domains \mathcal{D}_x are ideals of *S*, and the partial bijections $\theta_x : \mathcal{D}_{x^{-1}} \to \mathcal{D}_x$ are isomorphisms of semigroups.

Definition

If S is a monoid, then it is reasonable to assume that each ideal \mathcal{D}_x is also a monoid (i.e. generated by a central idempotent 1_x). In this situation we say that θ is unital.

Definition

A morphism of partial actions (unital partial actions) $\varphi : (S, \theta) \to (S', \theta')$ of *G* on semigroups (monoids) is a morphism of partial actions of *G* on the sets, whose restriction on each \mathcal{D}_x is a homomorphism of semigroups (monoids) $\mathcal{D}_x \to \mathcal{D}'_x$.

Partial G-modules

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions

・ロト ・ 日 ト ・ 日 ト ・

Partial G-modules

• G is a group.

< m

- ∢ ∃ ▶

Definition (Dokuchaev-Khrypchenko, 2013)

A partial G-module

Definition (Dokuchaev-Khrypchenko, 2013)

A partial *G*-module is a commutative monoid *A* with a unital partial action θ of *G* on *A*.

Definition (Dokuchaev-Khrypchenko, 2013)

A partial *G*-module is a commutative monoid *A* with a unital partial action θ of *G* on *A*.

The category of partial G-modules with morphisms of unital partial actions between them is denoted by pMod(G).

Definition (Dokuchaev-Khrypchenko, 2013)

A partial *G*-module is a commutative monoid *A* with a unital partial action θ of *G* on *A*.

The category of partial G-modules with morphisms of unital partial actions between them is denoted by pMod(G).

Remark

The category pMod(G) is not abelian in general,

Definition (Dokuchaev-Khrypchenko, 2013)

A partial *G*-module is a commutative monoid *A* with a unital partial action θ of *G* on *A*.

The category of partial G-modules with morphisms of unital partial actions between them is denoted by pMod(G).

Remark

The category pMod(G) is not abelian in general, because $Hom(A, A') = \emptyset$ for some $A, A' \in pMod(G)$.

Definition (Dokuchaev-Khrypchenko, 2013)

A partial *G*-module is a commutative monoid *A* with a unital partial action θ of *G* on *A*.

The category of partial G-modules with morphisms of unital partial actions between them is denoted by pMod(G).

Remark

The category pMod(G) is not abelian in general, because $Hom(A, A') = \emptyset$ for some $A, A' \in pMod(G)$. For example, this happens when $1_x = 1_y$ in A, but $1'_x \neq 1'_y$ in A' for some $x, y \in G$.

▲ □ ► ▲ □ ► ▲

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions

・ロト ・ 日 ト ・ 日 ト ・

∃ >

partial *n*-cochains

- $(A, \theta) \in pMod(G);$
- $1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$

- $(A, \theta) \in pMod(G);$
- $1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$
- $\mathcal{U}(I)$ denotes the group of units of an ideal I.

- $(A, \theta) \in pMod(G);$
- $1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$
- $\mathcal{U}(I)$ denotes the group of units of an ideal I.

For n > 0 a partial *n*-cochain of G with values in A

•
$$1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$$

• $\mathcal{U}(I)$ denotes the group of units of an ideal I.

Definition

For n > 0 a partial *n*-cochain of *G* with values in *A* is a function $f: G^n \to A$, such that $f(x_1, \ldots, x_n) \in \mathcal{U}(1_{(x_1, \ldots, x_n)}A)$.

•
$$1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$$

• $\mathcal{U}(I)$ denotes the group of units of an ideal I.

Definition

For n > 0 a partial *n*-cochain of *G* with values in *A* is a function $f : G^n \to A$, such that $f(x_1, \ldots, x_n) \in \mathcal{U}(1_{(x_1, \ldots, x_n)}A)$. By a partial 0-cochain we shall mean an invertible element of *A*.

•
$$1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$$

• $\mathcal{U}(I)$ denotes the group of units of an ideal I.

Definition

For n > 0 a partial *n*-cochain of *G* with values in *A* is a function $f: G^n \to A$, such that $f(x_1, \ldots, x_n) \in \mathcal{U}(1_{(x_1, \ldots, x_n)}A)$. By a partial 0-cochain we shall mean an invertible element of *A*.

Denote the set of partial *n*-cochains by $C^n(G, A)$.

•
$$1_{(x_1,...,x_n)} := 1_{x_1} 1_{x_1 x_2} \dots 1_{x_1 \dots x_n};$$

• $\mathcal{U}(I)$ denotes the group of units of an ideal I.

Definition

For n > 0 a partial *n*-cochain of *G* with values in *A* is a function $f : G^n \to A$, such that $f(x_1, \ldots, x_n) \in \mathcal{U}(1_{(x_1, \ldots, x_n)}A)$. By a partial 0-cochain we shall mean an invertible element of *A*.

Denote the set of partial *n*-cochains by $C^n(G, A)$. It is an abelian group under pointwise multiplication.

Definition

For n > 0, $f \in C^n(G, A)$ and $x_1, \ldots, x_{n+1} \in G$ define

< 3 >

Definition

For n > 0, $f \in C^n(G, A)$ and $x_1, \ldots, x_{n+1} \in G$ define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}} f(x_{2}, \dots, x_{n+1}))$$
$$\prod_{i=1}^{n} f(x_{1}, \dots, x_{i} x_{i+1}, \dots, x_{n+1})^{(-1)^{i}}$$
$$f(x_{1}, \dots, x_{n})^{(-1)^{n+1}},$$

the inverse elements being taken in the corresponding ideals.

Definition

For n > 0, $f \in C^n(G, A)$ and $x_1, \ldots, x_{n+1} \in G$ define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}} f(x_{2}, \dots, x_{n+1}))$$
$$\prod_{i=1}^{n} f(x_{1}, \dots, x_{i} x_{i+1}, \dots, x_{n+1})^{(-1)^{i}}$$
$$f(x_{1}, \dots, x_{n})^{(-1)^{n+1}},$$

the inverse elements being taken in the corresponding ideals. If $a \in C^0(G, A) = \mathcal{U}(A)$, we set $(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$.

Definition

For n > 0, $f \in C^n(G, A)$ and $x_1, \ldots, x_{n+1} \in G$ define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}} f(x_{2}, \dots, x_{n+1}))$$
$$\prod_{i=1}^{n} f(x_{1}, \dots, x_{i} x_{i+1}, \dots, x_{n+1})^{(-1)^{i}}$$
$$f(x_{1}, \dots, x_{n})^{(-1)^{n+1}},$$

the inverse elements being taken in the corresponding ideals. If $a \in C^0(G, A) = \mathcal{U}(A)$, we set $(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$.

Proposition

The map δ^n is a homomorphism $C^n(G, A) \to C^{n+1}(G, A)$, such that

Definition

For n > 0, $f \in C^n(G, A)$ and $x_1, \ldots, x_{n+1} \in G$ define

$$(\delta^{n} f)(x_{1}, \dots, x_{n+1}) = \theta_{x_{1}}(1_{x_{1}^{-1}} f(x_{2}, \dots, x_{n+1}))$$
$$\prod_{i=1}^{n} f(x_{1}, \dots, x_{i} x_{i+1}, \dots, x_{n+1})^{(-1)^{i}}$$
$$f(x_{1}, \dots, x_{n})^{(-1)^{n+1}},$$

the inverse elements being taken in the corresponding ideals. If $a \in C^0(G, A) = \mathcal{U}(A)$, we set $(\delta^0 a)(x) = \theta_x(1_{x^{-1}}a)a^{-1}$.

Proposition

The map δ^n is a homomorphism $C^n(G, A) \to C^{n+1}(G, A)$, such that $\delta^{n+1}\delta^n = 0$ for all $n \ge 0$.

Partial cohomology of G

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions

Image: A math a math

The map δ^n is called a coboundary homomorphism.

The map δ^n is called a coboundary homomorphism. We define the abelian groups

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$,

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$
The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$ and $H^n(G, A) = Z^n(G, A)/B^n(G, A)$

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$ and $H^n(G, A) = Z^n(G, A)/B^n(G, A)$ of partial *n*-cocycles,

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$ and $H^n(G, A) = Z^n(G, A)/B^n(G, A)$ of partial *n*-cocycles, *n*-coboundaries

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$ and $H^n(G, A) = Z^n(G, A)/B^n(G, A)$ of partial *n*-cocycles, *n*-coboundaries and *n*-cohomologies of *G* with values in *A*, $n \ge 1$

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$ and $H^n(G, A) = Z^n(G, A)/B^n(G, A)$ of partial *n*-cocycles, *n*-coboundaries and *n*-cohomologies of *G* with values in *A*, $n \ge 1$ $(H^0(G, A) = Z^0(G, A) = \ker \delta^0)$.

The map δ^n is called a coboundary homomorphism. We define the abelian groups $Z^n(G, A) = \ker \delta^n$, $B^n(G, A) = \operatorname{im} \delta^{n-1}$ and $H^n(G, A) = Z^n(G, A)/B^n(G, A)$ of partial *n*-cocycles, *n*-coboundaries and *n*-cohomologies of *G* with values in *A*, $n \ge 1$ $(H^0(G, A) = Z^0(G, A) = \ker \delta^0)$.

Proposition

For any $n \ge 0$ the map $A \mapsto H^n(G, A)$ is a functor from pMod(G) to the category Ab of abelian groups.

Inverse partial G-modules

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions

・ロト ・日下 ・ 日下

Inverse partial G-modules

Proposition

Let $(A, \theta) \in pMod(G)$.

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$.

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup,

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$,

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} .

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$,

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$, $E(\tilde{A})$ is generated by 1_x ($x \in G$)

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$, $E(\tilde{A})$ is generated by 1_x ($x \in G$) and $H^n(G, A) \cong H^n(G, \tilde{A})$.

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$, $E(\tilde{A})$ is generated by 1_x ($x \in G$) and $H^n(G, A) \cong H^n(G, \tilde{A})$.

Definition

A partial G-module (A, θ) is called inverse

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$, $E(\tilde{A})$ is generated by 1_x ($x \in G$) and $H^n(G, A) \cong H^n(G, \tilde{A})$.

Definition

A partial G-module (A, θ) is called inverse if A is inverse

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$, $E(\tilde{A})$ is generated by 1_x ($x \in G$) and $H^n(G, A) \cong H^n(G, \tilde{A})$.

Definition

A partial *G*-module (A, θ) is called inverse if *A* is inverse and E(A) is generated by 1_x ($x \in G$).

Let $(A, \theta) \in pMod(G)$. Define $\tilde{A} = \bigcup \mathcal{U}(1_{x_1} \dots 1_{x_n} A)$, the union being taken over all $n \ge 1$ and $x_1, \dots, x_n \in G$. Then \tilde{A} is an inverse semigroup, $\theta_x(1_{x^{-1}}\tilde{A}) = 1_x \tilde{A}$, so θ restricted to \tilde{A} defines a partial action $\tilde{\theta}$ of G on \tilde{A} . Moreover, $(\tilde{A}, \tilde{\theta}) \in pMod(G)$, $E(\tilde{A})$ is generated by 1_x ($x \in G$) and $H^n(G, A) \cong H^n(G, \tilde{A})$.

Definition

A partial *G*-module (A, θ) is called inverse if *A* is inverse and E(A) is generated by 1_x ($x \in G$).

The above proposition shows that it is enough to study cohomology with values in inverse partial *G*-modules.

・ロト ・聞ト ・ ヨト ・ ヨト

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions

・ロト ・回ト ・ヨト ・ヨ

• *S* is an inverse semigroup.

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An S-module

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An S-module is a semilattice of abelian groups A

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An S-module is a semilattice of abelian groups A with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$,

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An S-module is a semilattice of abelian groups A with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha: E(S) \to E(A)$ satisfying

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An S-module is a semilattice of abelian groups A with a homomorphism $\lambda : S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha : E(S) \to E(A)$ satisfying (i) $\lambda_e(a) = \alpha(e)a$ for all $e \in E(S)$ and $a \in A$,

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An *S*-module is a semilattice of abelian groups *A* with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha: E(S) \to E(A)$ satisfying (i) $\lambda_e(a) = \alpha(e)a$ for all $e \in E(S)$ and $a \in A$, (ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1})$ for all $s \in S$ and $e \in E(S)$.

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An *S*-module is a semilattice of abelian groups *A* with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha: E(S) \to E(A)$ satisfying (i) $\lambda_e(a) = \alpha(e)a$ for all $e \in E(S)$ and $a \in A$, (ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1})$ for all $s \in S$ and $e \in E(S)$.

Definition (Lausch, 1975)

A morphism of *S*-modules $\varphi : (A, \lambda, \alpha) \rightarrow (A', \lambda', \alpha')$

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An *S*-module is a semilattice of abelian groups *A* with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha: E(S) \to E(A)$ satisfying (i) $\lambda_e(a) = \alpha(e)a$ for all $e \in E(S)$ and $a \in A$, (ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1})$ for all $s \in S$ and $e \in E(S)$.

Definition (Lausch, 1975)

A morphism of S-modules $\varphi : (A, \lambda, \alpha) \to (A', \lambda', \alpha')$ is a homomorphism of semigroups $A \to A'$, such that

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An *S*-module is a semilattice of abelian groups *A* with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha: E(S) \to E(A)$ satisfying (i) $\lambda_e(a) = \alpha(e)a$ for all $e \in E(S)$ and $a \in A$, (ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1})$ for all $s \in S$ and $e \in E(S)$.

Definition (Lausch, 1975)

A morphism of S-modules $\varphi : (A, \lambda, \alpha) \to (A', \lambda', \alpha')$ is a homomorphism of semigroups $A \to A'$, such that

(i)
$$\varphi \circ \alpha = \alpha'$$
 on $E(S)$;

• *S* is an inverse semigroup.

Definition (Lausch, 1975)

An *S*-module is a semilattice of abelian groups *A* with a homomorphism $\lambda: S \to \operatorname{End} A$, $s \mapsto \lambda_s$, and an isomorphism $\alpha: E(S) \to E(A)$ satisfying (i) $\lambda_e(a) = \alpha(e)a$ for all $e \in E(S)$ and $a \in A$, (ii) $\lambda_s(\alpha(e)) = \alpha(ses^{-1})$ for all $s \in S$ and $e \in E(S)$.

Definition (Lausch, 1975)

A morphism of S-modules $\varphi : (A, \lambda, \alpha) \to (A', \lambda', \alpha')$ is a homomorphism of semigroups $A \to A'$, such that

(i)
$$\varphi \circ \alpha = \alpha'$$
 on $E(S)$;

(ii)
$$\varphi \circ \lambda_s = \lambda'_s \circ \varphi$$
 on A for all $s \in S$.

Cohomology of S

イロン イヨン イヨン イ

The category Mod(S) of S-modules is abelian

The category Mod(S) of S-modules is abelian and has enough projectives.

The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial S-module

The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial S-module is the semilattice \mathbb{Z}_S of the copies $(\mathbb{Z}_S)_e = \{n_e \mid n \in \mathbb{Z}\}$ of \mathbb{Z}
The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial S-module is the semilattice \mathbb{Z}_S of the copies $(\mathbb{Z}_S)_e = \{n_e \mid n \in \mathbb{Z}\}$ of \mathbb{Z} with $\lambda_s(n_e) = n_{ses^{-1}}$

The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial *S*-module is the semilattice \mathbb{Z}_S of the copies $(\mathbb{Z}_S)_e = \{n_e \mid n \in \mathbb{Z}\}$ of \mathbb{Z} with $\lambda_s(n_e) = n_{ses^{-1}}$ and $\alpha(e) = 0_e$ $(e \in E(S), s \in S)$.

The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial *S*-module is the semilattice \mathbb{Z}_S of the copies $(\mathbb{Z}_S)_e = \{n_e \mid n \in \mathbb{Z}\}$ of \mathbb{Z} with $\lambda_s(n_e) = n_{ses^{-1}}$ and $\alpha(e) = 0_e$ $(e \in E(S), s \in S)$.

Definition (Lausch, 1975)

The *n*-th cohomology group $H^n_S(A)$ of S with values in $A \in Mod(S)$

The category Mod(S) of S-modules is abelian and has enough projectives.

Definition (Lausch, 1975)

The trivial *S*-module is the semilattice \mathbb{Z}_S of the copies $(\mathbb{Z}_S)_e = \{n_e \mid n \in \mathbb{Z}\}$ of \mathbb{Z} with $\lambda_s(n_e) = n_{ses^{-1}}$ and $\alpha(e) = 0_e$ $(e \in E(S), s \in S)$.

Definition (Lausch, 1975)

The *n*-th cohomology group $H^n_S(A)$ of S with values in $A \in Mod(S)$ is $R^n Hom(-, A)$ applied to \mathbb{Z}_S .

・ロト ・ 同ト ・ ヨト ・ ヨ

Partial homomorphisms

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions

Partial homomorphisms

• G is a group;

- *G* is a group;
- S is a monoid.

- *G* is a group;
- S is a monoid.

A map $\Gamma: G \to S$ is called a partial homomorphism

- *G* is a group;
- S is a monoid.

A map $\Gamma: G \to S$ is called a partial homomorphism if $\Gamma(1_G) = 1_S$

- *G* is a group;
- S is a monoid.

A map $\Gamma : G \to S$ is called a partial homomorphism if $\Gamma(1_G) = 1_S$ and for all $x, y \in G$:

- *G* is a group;
- S is a monoid.

A map $\Gamma : G \to S$ is called a partial homomorphism if $\Gamma(1_G) = 1_S$ and for all $x, y \in G$: (i) $\Gamma(x^{-1})\Gamma(x)\Gamma(y) = \Gamma(x^{-1})\Gamma(xy)$;

- *G* is a group;
- S is a monoid.

A map $\Gamma: G \to S$ is called a partial homomorphism if $\Gamma(1_G) = 1_S$ and for all $x, y \in G$: (i) $\Gamma(x^{-1})\Gamma(x)\Gamma(y) = \Gamma(x^{-1})\Gamma(xy)$; (ii) $\Gamma(x)\Gamma(y)\Gamma(y^{-1}) = \Gamma(xy)\Gamma(y^{-1})$.

- *G* is a group;
- S is a monoid.

A map $\Gamma: G \to S$ is called a partial homomorphism if $\Gamma(1_G) = 1_S$ and for all $x, y \in G$: (i) $\Gamma(x^{-1})\Gamma(x)\Gamma(y) = \Gamma(x^{-1})\Gamma(xy)$; (ii) $\Gamma(x)\Gamma(y)\Gamma(y^{-1}) = \Gamma(xy)\Gamma(y^{-1})$.

It follows that $\Gamma(x)\Gamma(x^{-1})$ is an idempotent, which will be denoted by e_x .

Admissible partial homomorphisms

A partial homomorphism $\Gamma: G \rightarrow S$ is called admissible if

A partial homomorphism $\Gamma: G \rightarrow S$ is called admissible if

(i) $\langle \Gamma(G) \rangle = S;$

A partial homomorphism $\Gamma : G \rightarrow S$ is called admissible if

(i) $\langle \Gamma(G) \rangle = S$; (ii) there exists a homomorphism $\eta : S \to G$ such that $\eta \circ \Gamma = id_G$.

A partial homomorphism $\Gamma : G \rightarrow S$ is called admissible if

(i) $\langle \Gamma(G) \rangle = S$; (ii) there exists a homomorphism $\eta : S \to G$ such that $\eta \circ \Gamma = id_G$.

Remark

If such a partial homomorphism $\Gamma : G \to S$ exists, then property (i) guarantees that S is inverse.

• (A, θ) is a partial *G*-module;

(A, θ) is a partial G-module;
f ∈ Z²(G, A).

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$,

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol.

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol. It is a semigroup under multiplication $a\delta_x \cdot b\delta_y = a\theta_x(1_{x^{-1}}b)f(x,y)\delta_{xy}$.

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol. It is a semigroup under multiplication $a\delta_x \cdot b\delta_y = a\theta_x(1_{x^{-1}}b)f(x,y)\delta_{xy}$.

Remark

If (A, θ) is inverse, then $A *_{\theta, f} G$ is inverse.

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol. It is a semigroup under multiplication $a\delta_x \cdot b\delta_y = a\theta_x(1_{x^{-1}}b)f(x,y)\delta_{xy}$.

Remark

If (A, θ) is inverse, then $A *_{\theta, f} G$ is inverse.

If f is trivial, then the notation $A *_{\theta,f} G$ is reduced to $A *_{\theta} G$.

- (A, θ) is a partial *G*-module;
- $f \in Z^2(G, A)$.

Definition (Dokuchaev-Exel-Simón, 2008)

The crossed product of A by G with twisting f is the set $A *_{\theta,f} G$ of $a\delta_x$, where $x \in G$, $a \in 1_x A$ and δ_x is a symbol. It is a semigroup under multiplication $a\delta_x \cdot b\delta_y = a\theta_x(1_{x^{-1}}b)f(x,y)\delta_{xy}$.

Remark

If (A, θ) is inverse, then $A *_{\theta, f} G$ is inverse.

If f is trivial, then the notation $A *_{\theta,f} G$ is reduced to $A *_{\theta} G$. The map $x \mapsto 1_x \delta_x$ is an admissible partial homomorphism $\Gamma^{\theta} : G \to E(A) *_{\theta} G = S^{\theta}$ associated with (A, θ) .

→ ∃ →

• (A, θ) is an inverse partial *G*-module.

• (A, θ) is an inverse partial *G*-module.

Proposition

There exist an inverse monoid S,

• (A, θ) is an inverse partial *G*-module.

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$

• (A, θ) is an inverse partial *G*-module.

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma : G \to S$ and a unique S-module structure (λ, α) on A satisfying

• (A, θ) is an inverse partial *G*-module.

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying (i) $1_x = \alpha(e_x)$ for all $x \in G$;

• (A, θ) is an inverse partial *G*-module.

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying (i) $1_x = \alpha(e_x)$ for all $x \in G$; (ii) $\theta_x(a) = \lambda_{\Gamma(x)}(a)$ for all $x \in G$ and $a \in 1_{x^{-1}}A$.
From inverse partial G-modules to S-modules

• (A, θ) is an inverse partial *G*-module.

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma : G \to S$ and a unique S-module structure (λ, α) on A satisfying

(i)
$$1_x = \alpha(e_x)$$
 for all $x \in G$;

(ii)
$$\theta_x(a) = \lambda_{\Gamma(x)}(a)$$
 for all $x \in G$ and $a \in 1_{x^{-1}}A$.

Conversely, given an admissible partial homomorphism $\Gamma: G \to S$

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying (i) $1_x = \alpha(e_x)$ for all $x \in G$; (ii) $\theta_x(a) = \lambda_{\Gamma(x)}(a)$ for all $x \in G$ and $a \in 1_{x^{-1}}A$. Conversely, given an admissible partial homomorphism $\Gamma: G \to S$ and an S-module (A, λ, α) ,

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying

(i)
$$1_x = \alpha(e_x)$$
 for all $x \in G$;

(ii)
$$\theta_x(a) = \lambda_{\Gamma(x)}(a)$$
 for all $x \in G$ and $a \in 1_{x^{-1}}A$.

Conversely, given an admissible partial homomorphism $\Gamma : G \to S$ and an S-module (A, λ, α) , equalities (i)–(ii) endow A with an inverse partial G-module structure.

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying (i) $1_x = \alpha(e_x)$ for all $x \in G$; (ii) $\theta_x(a) = \lambda_{\Gamma(x)}(a)$ for all $x \in G$ and $a \in 1_{x^{-1}}A$. Conversely, given an admissible partial homomorphism $\Gamma: G \to S$ and an S-module (A, λ, α) , equalities (i)–(ii) endow A with an inverse partial G-module structure.

A standard way to choose Γ and hence (A, λ, α) :

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying (i) $1_x = \alpha(e_x)$ for all $x \in G$; (ii) $\theta_x(a) = \lambda_{\Gamma(x)}(a)$ for all $x \in G$ and $a \in 1_{x^{-1}}A$. Conversely, given an admissible partial homomorphism $\Gamma: G \to S$ and an S-module (A, λ, α) , equalities (i)–(ii) endow A with an inverse partial G-module structure.

A standard way to choose Γ and hence (A, λ, α) : set $S = S^{\theta}$ and $\Gamma = \Gamma^{\theta}$.

Proposition

There exist an inverse monoid *S*, an admissible partial homomorphism $\Gamma: G \to S$ and a unique *S*-module structure (λ, α) on *A* satisfying (i) $1_x = \alpha(e_x)$ for all $x \in G$; (ii) $\theta_x(a) = \lambda_{\Gamma(x)}(a)$ for all $x \in G$ and $a \in 1_{x^{-1}}A$. Conversely, given an admissible partial homomorphism $\Gamma: G \to S$ and an *S*-module (A, λ, α) , equalities (i)–(ii) endow *A* with an inverse partial *G*-module structure.

A standard way to choose Γ and hence (A, λ, α) : set $S = S^{\theta}$ and $\Gamma = \Gamma^{\theta}$. Then $\alpha^{\theta}(1_{x_1} \dots 1_{x_n} \delta_1) = 1_{x_1} \dots 1_{x_n}$

Proposition

There exist an inverse monoid S, an admissible partial homomorphism $\Gamma: G \to S$ and a unique S-module structure (λ, α) on A satisfying

(i)
$$1_x = \alpha(e_x)$$
 for all $x \in G$;

(ii)
$$\theta_x(a) = \lambda_{\Gamma(x)}(a)$$
 for all $x \in G$ and $a \in 1_{x^{-1}}A$.

Conversely, given an admissible partial homomorphism $\Gamma : G \to S$ and an S-module (A, λ, α) , equalities (i)–(ii) endow A with an inverse partial G-module structure.

A standard way to choose Γ and hence (A, λ, α) : set $S = S^{\theta}$ and $\Gamma = \Gamma^{\theta}$. Then $\alpha^{\theta}(1_{x_1} \dots 1_{x_n} \delta_1) = 1_{x_1} \dots 1_{x_n}$ and $\lambda^{\theta}_{1_{x_1} \dots 1_{x_n} 1_y \delta_y}(a) = 1_{x_1} \dots 1_{x_n} \theta_y(1_{y^{-1}}a).$

Theorem

For any admissible partial homomorphism $\Gamma: G \to S$

Theorem

For any admissible partial homomorphism $\Gamma : G \to S$ and $A \in Mod(S)$ inducing (A, θ) we have

Theorem

For any admissible partial homomorphism $\Gamma : G \to S$ and $A \in Mod(S)$ inducing (A, θ) we have $H^n(G, A) \cong H^n_S(A)$ for arbitrary $n \ge 0$.

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions э

・ロト ・ 日 ト ・ 田 ト ・

• *S* is an inverse semigroup;

Image: A math a math

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism $i : A \rightarrow U$

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism $i : A \rightarrow U$ and an idempotent-separating epimorphism $j : U \rightarrow S$, such that

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism $i : A \to U$ and an idempotent-separating epimorphism $j : U \to S$, such that $i(A) = \{u \in U \mid j(u) \in E(S)\}.$

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism $i : A \to U$ and an idempotent-separating epimorphism $j : U \to S$, such that $i(A) = \{u \in U \mid j(u) \in E(S)\}.$

Definition (Lausch, 1975)

Two extensions U and U' of A by S are called equivalent

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism $i : A \to U$ and an idempotent-separating epimorphism $j : U \to S$, such that $i(A) = \{u \in U \mid j(u) \in E(S)\}.$

Definition (Lausch, 1975)

Two extensions U and U' of A by S are called equivalent if there is a homomorphism $\mu: U \to U'$ such that

- *S* is an inverse semigroup;
- A is a semilattice of abelian groups.

Definition (Lausch, 1975)

An extension of A by S is an inverse semigroup U with a monomorphism $i : A \to U$ and an idempotent-separating epimorphism $j : U \to S$, such that $i(A) = \{u \in U \mid j(u) \in E(S)\}.$

Definition (Lausch, 1975)

Two extensions U and U' of A by S are called equivalent if there is a homomorphism $\mu : U \to U'$ such that the following diagram commutes:

$$\begin{array}{c} A \xrightarrow{i} U \xrightarrow{j} S \\ \| & \downarrow \mu \\ A \xrightarrow{i'} U' \xrightarrow{j'} S \end{array}$$

• (A, θ) is an inverse partial *G*-module;

- (A, θ) is an inverse partial *G*-module;
- $f \in Z^2(G, A);$

- (A, θ) is an inverse partial *G*-module;
- $f \in Z^2(G, A);$
- Γ : G → S and (A, λ, α) are an admissible partial homomorphism and an S-module inducing (A, θ).

- (A, θ) is an inverse partial *G*-module;
- $f \in Z^2(G, A);$
- Γ : G → S and (A, λ, α) are an admissible partial homomorphism and an S-module inducing (A, θ).

Proposition

The crossed product $A *_{\theta, f} G$ is an extension of A by S,

- (A, θ) is an inverse partial *G*-module;
- $f \in Z^2(G, A);$
- Γ : G → S and (A, λ, α) are an admissible partial homomorphism and an S-module inducing (A, θ).

Proposition

The crossed product $A *_{\theta,f} G$ is an extension of A by S, where $i : A \to A *_{\theta,f} G$ is given by $a \mapsto af(1,1)^{-1}\delta_1$

- (A, θ) is an inverse partial *G*-module;
- $f \in Z^2(G, A);$
- Γ : G → S and (A, λ, α) are an admissible partial homomorphism and an S-module inducing (A, θ).

Proposition

The crossed product $A *_{\theta,f} G$ is an extension of A by S, where $i : A \to A *_{\theta,f} G$ is given by $a \mapsto af(1,1)^{-1}\delta_1$ and $j : A *_{\theta,f} G \to S$ is defined by $a\delta_x \mapsto \alpha^{-1}(aa^{-1})\Gamma(x)$.

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions э

・ロト ・ 日 ト ・ 田 ト ・

• G is a group;

Image: A math a math

- G is a group;
- A is a commutative inverse monoid (a semilattice of abelian groups with identity).

- G is a group;
- A is a commutative inverse monoid (a semilattice of abelian groups with identity).

An extension of A by G

- G is a group;
- A is a commutative inverse monoid (a semilattice of abelian groups with identity).

An extension of A by G is a pair

- G is a group;
- A is a commutative inverse monoid (a semilattice of abelian groups with identity).

An extension of A by G is a pair consisting of an admissible partial homomorphism $\Gamma: G \to S$

- G is a group;
- A is a commutative inverse monoid (a semilattice of abelian groups with identity).

An extension of A by G is a pair consisting of an admissible partial homomorphism $\Gamma : G \to S$ and an extension (in the sense of Lausch) of A by S.
Extensions of A by G

M. Dokuchaev and M. Khrypchenko (USP) Extensions arising from partial actions э

・ロト ・ 日 ト ・ 田 ト ・

Two extensions $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ and $\Gamma' : G \to S'$, $A \xrightarrow{i'} U' \xrightarrow{j'} S'$ of A by G are called equivalent

Two extensions $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ and $\Gamma' : G \to S'$, $A \xrightarrow{i'} U' \xrightarrow{j'} S'$ of A by G are called equivalent if there are isomorphisms $\mu : U \to U'$

Two extensions $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ and $\Gamma' : G \to S'$, $A \xrightarrow{i'} U' \xrightarrow{j'} S'$ of A by G are called equivalent if there are isomorphisms $\mu : U \to U'$ and $\nu : S \to S'$ such that

Two extensions $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ and $\Gamma' : G \to S'$, $A \xrightarrow{i'} U' \xrightarrow{j'} S'$ of A by G are called equivalent if there are isomorphisms $\mu : U \to U'$ and $\nu : S \to S'$ such that the following diagrams commute:

From extensions of A by G to partial G-modules

Any extension of A by G induces a structure of inverse partial G-module on A.

Any extension of A by G induces a structure of inverse partial G-module on A. Moreover, equivalent extensions induce identical modules.

Any extension of A by G induces a structure of inverse partial G-module on A. Moreover, equivalent extensions induce identical modules.

Proposition

Let $\Gamma: G \to S$, $A \stackrel{i}{\to} U \stackrel{j}{\to} S$ be an extension of A by G

Any extension of A by G induces a structure of inverse partial G-module on A. Moreover, equivalent extensions induce identical modules.

Proposition

Let $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ be an extension of A by G and θ the corresponding partial action of G on A.

Any extension of A by G induces a structure of inverse partial G-module on A. Moreover, equivalent extensions induce identical modules.

Proposition

Let $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ be an extension of A by G and θ the corresponding partial action of G on A. Then there is an equivalent extension of the form $\Gamma^{\theta} : G \to S^{\theta}$, $A \xrightarrow{i} U \xrightarrow{j'} S^{\theta}$.

э

・ロト ・ 日 ト ・ 日 ト ・

• (A, θ) is an inverse partial *G*-module.

3 ×

• (A, θ) is an inverse partial *G*-module.

Definition

```
An extension of (A, \theta) by G
```

< ∃ > <

• (A, θ) is an inverse partial *G*-module.

Definition

An extension of (A, θ) by G is an extension $\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$ of A by G such that

• (A, θ) is an inverse partial *G*-module.

Definition

An extension of (A, θ) by G is an extension $\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$ of A by G such that $\Gamma = \Gamma^{\theta}$

• (A, θ) is an inverse partial *G*-module.

Definition

An extension of (A, θ) by G is an extension $\Gamma : G \to S$, $A \xrightarrow{i} U \xrightarrow{j} S$ of A by G such that $\Gamma = \Gamma^{\theta}$ and the corresponding partial G-module is (A, θ) .

• (A, θ) is an inverse partial *G*-module.

Definition

An extension of (A, θ) by G is an extension $\Gamma : G \to S$, $A \xrightarrow{\prime} U \xrightarrow{J} S$ of A by G such that $\Gamma = \Gamma^{\theta}$ and the corresponding partial G-module is (A, θ) .

Corollary

Equivalence classes of extensions of (A, θ) by G are in a one-to-one correspondence with elements of $H^2(G, A)$.

• (A, θ) is an inverse partial *G*-module.

Definition

An extension of (A, θ) by G is an extension $\Gamma : G \to S, A \xrightarrow{i} U \xrightarrow{j} S$ of A by G such that $\Gamma = \Gamma^{\theta}$ and the corresponding partial G-module is (A, θ) .

Corollary

Equivalence classes of extensions of (A, θ) by G are in a one-to-one correspondence with elements of $H^2(G, A)$.

Theorem

Any extension of (A, θ) by G is equivalent to $A *_{\theta, f} G$ for some (unique up to a coboundary) $f \in Z^2(G, A)$.

イロト イヨト イヨト イヨト

Split extensions of (A, θ) by G

Definition

An extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G is said to split

Definition

An extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G is said to split if there is a homomorphism $k: S \to U$ (called a splitting) such that

Definition

An extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G is said to split if there is a homomorphism $k: S \to U$ (called a splitting) such that $j \circ k = id_S$.

Definition

An extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G is said to split if there is a homomorphism $k: S \to U$ (called a splitting) such that $j \circ k = id_S$.

Proposition

An extension of (A, θ) by G splits

Definition

An extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G is said to split if there is a homomorphism $k: S \to U$ (called a splitting) such that $j \circ k = id_S$.

Proposition

An extension of (A, θ) by G splits if and only if it is equivalent to $A *_{\theta} G$.

The splittings of extensions of (A, θ) by G

Image: A math a math

The splittings of the extension $A *_{\theta} G$ are in a one-to-one correspondence with the elements of $Z^{1}(G, A)$.

The splittings of the extension $A *_{\theta} G$ are in a one-to-one correspondence with the elements of $Z^{1}(G, A)$.

Definition

Two splittings k_1 and k_2 of a split extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G are said to be A-conjugate

The splittings of the extension $A *_{\theta} G$ are in a one-to-one correspondence with the elements of $Z^{1}(G, A)$.

Definition

Two splittings k_1 and k_2 of a split extension $A \xrightarrow{i} U \xrightarrow{j} S$ of (A, θ) by G are said to be A-conjugate if there is $a \in A$ such that $k_1(s) = i(a)k_2(s)i(a)^{-1}$ for all $s \in S$.

The splittings of the extension $A *_{\theta} G$ are in a one-to-one correspondence with the elements of $Z^{1}(G, A)$.

Definition

Two splittings k_1 and k_2 of a split extension $A \xrightarrow{i} U \xrightarrow{J} S$ of (A, θ) by G are said to be A-conjugate if there is $a \in A$ such that $k_1(s) = i(a)k_2(s)i(a)^{-1}$ for all $s \in S$.

Theorem

There is a one-to-one correspondence between A-conjugacy classes of splittings of $A *_{\theta} G$ and elements of $H^1(G, A)$.

- M. Dokuchaev, R. Exel, J. J. Simón, Crossed products by twisted partial actions and graded algebras, *J. Algebra*, **320** (2008), (8), 3278–3310.
- M. Dokuchaev, M. Khrypchenko, Partial cohomology of groups, *preprint*. http://arxiv.org/abs/1309.7069
- R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc., **126** (1998), (12), 3481–3494.
- H. Lausch, Cohomology of inverse semigroups, *J. Algebra*, **35** (1975), 273–303.

THANK YOU!